3.70 \(\int \frac{1}{(a+b x) \sqrt{c+d x} \sqrt{e+f x} \sqrt{g+h x}} \, dx\)

Optimal. Leaf size=165 \[ -\frac{2 \sqrt{c f-d e} \sqrt{\frac{d (e+f x)}{d e-c f}} \sqrt{\frac{d (g+h x)}{d g-c h}} \Pi \left (-\frac{b (d e-c f)}{(b c-a d) f};\sin ^{-1}\left (\frac{\sqrt{f} \sqrt{c+d x}}{\sqrt{c f-d e}}\right )|\frac{(d e-c f) h}{f (d g-c h)}\right )}{\sqrt{f} \sqrt{e+f x} \sqrt{g+h x} (b c-a d)} \]

[Out]

(-2*Sqrt[-(d*e) + c*f]*Sqrt[(d*(e + f*x))/(d*e - c*f)]*Sqrt[(d*(g + h*x))/(d*g - c*h)]*EllipticPi[-((b*(d*e -
c*f))/((b*c - a*d)*f)), ArcSin[(Sqrt[f]*Sqrt[c + d*x])/Sqrt[-(d*e) + c*f]], ((d*e - c*f)*h)/(f*(d*g - c*h))])/
((b*c - a*d)*Sqrt[f]*Sqrt[e + f*x]*Sqrt[g + h*x])

________________________________________________________________________________________

Rubi [A]  time = 0.37394, antiderivative size = 165, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.086, Rules used = {169, 538, 537} \[ -\frac{2 \sqrt{c f-d e} \sqrt{\frac{d (e+f x)}{d e-c f}} \sqrt{\frac{d (g+h x)}{d g-c h}} \Pi \left (-\frac{b (d e-c f)}{(b c-a d) f};\sin ^{-1}\left (\frac{\sqrt{f} \sqrt{c+d x}}{\sqrt{c f-d e}}\right )|\frac{(d e-c f) h}{f (d g-c h)}\right )}{\sqrt{f} \sqrt{e+f x} \sqrt{g+h x} (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x)*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]),x]

[Out]

(-2*Sqrt[-(d*e) + c*f]*Sqrt[(d*(e + f*x))/(d*e - c*f)]*Sqrt[(d*(g + h*x))/(d*g - c*h)]*EllipticPi[-((b*(d*e -
c*f))/((b*c - a*d)*f)), ArcSin[(Sqrt[f]*Sqrt[c + d*x])/Sqrt[-(d*e) + c*f]], ((d*e - c*f)*h)/(f*(d*g - c*h))])/
((b*c - a*d)*Sqrt[f]*Sqrt[e + f*x]*Sqrt[g + h*x])

Rule 169

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + (f*x^2)/d, x]]*Sqrt[Simp[(d
*g - c*h)/d + (h*x^2)/d, x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] &&  !SimplerQ[e
 + f*x, c + d*x] &&  !SimplerQ[g + h*x, c + d*x]

Rule 538

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d*x^2)/c]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d*x^2)/c]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rubi steps

\begin{align*} \int \frac{1}{(a+b x) \sqrt{c+d x} \sqrt{e+f x} \sqrt{g+h x}} \, dx &=-\left (2 \operatorname{Subst}\left (\int \frac{1}{\left (b c-a d-b x^2\right ) \sqrt{e-\frac{c f}{d}+\frac{f x^2}{d}} \sqrt{g-\frac{c h}{d}+\frac{h x^2}{d}}} \, dx,x,\sqrt{c+d x}\right )\right )\\ &=-\frac{\left (2 \sqrt{\frac{d (e+f x)}{d e-c f}}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (b c-a d-b x^2\right ) \sqrt{1+\frac{f x^2}{d \left (e-\frac{c f}{d}\right )}} \sqrt{g-\frac{c h}{d}+\frac{h x^2}{d}}} \, dx,x,\sqrt{c+d x}\right )}{\sqrt{e+f x}}\\ &=-\frac{\left (2 \sqrt{\frac{d (e+f x)}{d e-c f}} \sqrt{\frac{d (g+h x)}{d g-c h}}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (b c-a d-b x^2\right ) \sqrt{1+\frac{f x^2}{d \left (e-\frac{c f}{d}\right )}} \sqrt{1+\frac{h x^2}{d \left (g-\frac{c h}{d}\right )}}} \, dx,x,\sqrt{c+d x}\right )}{\sqrt{e+f x} \sqrt{g+h x}}\\ &=-\frac{2 \sqrt{-d e+c f} \sqrt{\frac{d (e+f x)}{d e-c f}} \sqrt{\frac{d (g+h x)}{d g-c h}} \Pi \left (-\frac{b (d e-c f)}{(b c-a d) f};\sin ^{-1}\left (\frac{\sqrt{f} \sqrt{c+d x}}{\sqrt{-d e+c f}}\right )|\frac{(d e-c f) h}{f (d g-c h)}\right )}{(b c-a d) \sqrt{f} \sqrt{e+f x} \sqrt{g+h x}}\\ \end{align*}

Mathematica [C]  time = 1.36514, size = 225, normalized size = 1.36 \[ \frac{2 i (c+d x) \sqrt{\frac{d (e+f x)}{f (c+d x)}} \sqrt{\frac{d (g+h x)}{h (c+d x)}} \left (\text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{d e}{f}-c}}{\sqrt{c+d x}}\right ),\frac{d f g-c f h}{d e h-c f h}\right )-\Pi \left (\frac{(b c-a d) f}{b (c f-d e)};i \sinh ^{-1}\left (\frac{\sqrt{\frac{d e}{f}-c}}{\sqrt{c+d x}}\right )|\frac{d f g-c f h}{d e h-c f h}\right )\right )}{\sqrt{e+f x} \sqrt{g+h x} (a d-b c) \sqrt{\frac{d e}{f}-c}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x)*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]),x]

[Out]

((2*I)*(c + d*x)*Sqrt[(d*(e + f*x))/(f*(c + d*x))]*Sqrt[(d*(g + h*x))/(h*(c + d*x))]*(EllipticF[I*ArcSinh[Sqrt
[-c + (d*e)/f]/Sqrt[c + d*x]], (d*f*g - c*f*h)/(d*e*h - c*f*h)] - EllipticPi[((b*c - a*d)*f)/(b*(-(d*e) + c*f)
), I*ArcSinh[Sqrt[-c + (d*e)/f]/Sqrt[c + d*x]], (d*f*g - c*f*h)/(d*e*h - c*f*h)]))/((-(b*c) + a*d)*Sqrt[-c + (
d*e)/f]*Sqrt[e + f*x]*Sqrt[g + h*x])

________________________________________________________________________________________

Maple [A]  time = 0.026, size = 223, normalized size = 1.4 \begin{align*} 2\,{\frac{\sqrt{dx+c}\sqrt{fx+e}\sqrt{hx+g} \left ( cf-de \right ) }{ \left ( ad-bc \right ) f \left ( dfh{x}^{3}+cfh{x}^{2}+deh{x}^{2}+dfg{x}^{2}+cehx+cfgx+degx+ceg \right ) }\sqrt{{\frac{ \left ( dx+c \right ) f}{cf-de}}}\sqrt{-{\frac{ \left ( hx+g \right ) d}{ch-dg}}}\sqrt{-{\frac{ \left ( fx+e \right ) d}{cf-de}}}{\it EllipticPi} \left ( \sqrt{{\frac{ \left ( dx+c \right ) f}{cf-de}}},-{\frac{ \left ( cf-de \right ) b}{ \left ( ad-bc \right ) f}},\sqrt{{\frac{ \left ( cf-de \right ) h}{f \left ( ch-dg \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x+a)/(d*x+c)^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x)

[Out]

2*(d*x+c)^(1/2)*(f*x+e)^(1/2)*(h*x+g)^(1/2)/f*((d*x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+
e)*d/(c*f-d*e))^(1/2)*EllipticPi(((d*x+c)*f/(c*f-d*e))^(1/2),-(c*f-d*e)*b/f/(a*d-b*c),((c*f-d*e)*h/f/(c*h-d*g)
)^(1/2))*(c*f-d*e)/(a*d-b*c)/(d*f*h*x^3+c*f*h*x^2+d*e*h*x^2+d*f*g*x^2+c*e*h*x+c*f*g*x+d*e*g*x+c*e*g)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x + a\right )} \sqrt{d x + c} \sqrt{f x + e} \sqrt{h x + g}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x + a)*sqrt(d*x + c)*sqrt(f*x + e)*sqrt(h*x + g)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b x\right ) \sqrt{c + d x} \sqrt{e + f x} \sqrt{g + h x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)**(1/2)/(f*x+e)**(1/2)/(h*x+g)**(1/2),x)

[Out]

Integral(1/((a + b*x)*sqrt(c + d*x)*sqrt(e + f*x)*sqrt(g + h*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x + a\right )} \sqrt{d x + c} \sqrt{f x + e} \sqrt{h x + g}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((b*x + a)*sqrt(d*x + c)*sqrt(f*x + e)*sqrt(h*x + g)), x)